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Abstract: We develop extensions of the Polya posterior that can be used
to estimate population quantiles in stratified populations. In the simple case
with no auxiliary information, estimates based on this extension to the Polya
posterior perform similarly to the standard frequentist estimates. The Polya
posterior can be extended to incorporate a variety of prior knowledge about
an auxiliary characteristic. In particular, we consider estimation of population
quantiles for stratified populations when there exists prior knowledge that a
population quantile of an auxiliary variable lies in a specified interval. This
type of prior information is difficult to exploit using standard methods. We
show how a constrained version of the Polya posterior can use this information
to obtain improved point and interval estimators of a population quantile.

1. Introduction

In the area of finite population sampling more effort has been spent on the de-
velopment of methods for estimating population means than on developing methods
for estimating population quantiles. This imbalance is particularly great for popula-
tions with an auxiliary characteristic. In addition, for populations with an auxiliary
variable it is usually assumed that the population mean of the auxiliary characteris-
tic is known precisely, a population quantile of the auxiliary characteristic is known
precisely, or that there exists some linear relationship between the characteristic of
interest and the completely known auxiliary characteristic. We consider estimation
of population quantiles for stratified populations when there exists a priori knowledge
that a population quantile of an auxiliary variable belongs to a specified interval of
real numbers. This type of prior information is difficult to exploit using standard

1



methods.
The standard Polya posterior is a noninformative, or objective, nonparametric

Bayesian posterior predictive distribution which can be used when little or no prior
information is available. It is related to the Bayesian bootstrap of Rubin [7], also
see Lo [3] for more details. The Polya posterior has been extended to a variety of
situations involving different types of prior information. For a broader discussion of
the Polya posterior than is presented here see Ghosh and Meeden [2]. Nelson and
Meeden [5] examined the use of a constrained version of the Polya posterior to esti-
mate population means and medians for nonstratified populations when, a priori, it is
known that the median of an auxiliary characteristic belongs to some specified inter-
val. Nelson and Meeden [6] also examined the form of the Polya posterior predictive
distribution for population quantiles for nonstratified populations.

We extend these previous results to consider estimation of a population quantile
for a stratified population when it is known a priori that a population quantile of
an auxiliary characteristic belongs to a specified interval and related types of prior
information. We show how a constrained version of the Polya posterior can use this
information to obtain sensible point and interval estimators of a population quantile.
The approach developed is applicable to an array of situations broader than knowledge
that the particular quantile belongs to a specified interval.

In the following section we introduce the necessary notation for discussing sam-
pling from stratified populations. We then briefly review the Polya posterior and
discuss its application to quantile estimation in stratified populations. Subsequently
we develop a constrained Polya posterior for estimating population quantiles in strati-
fied populations when prior information about an auxiliary characteristic is available.
We present the results of simulation studies examining the performance of median
estimators based on this constrained Polya posterior using prior information that the
population median of an auxiliary variable is known to belong to a specified interval.

2. Stratified Finite Population Samples

Consider a finite population consisting of G strata with Nj units within each
stratum, labeled j1, j2, . . . , jNj

for j = 1 . . . , G. We assume that the labels are
known but contain no information about the values of the characteristics for the
units. For each unit ji, yji

is the unknown real-valued measure of some characteristic
of interest and xji

is the unknown real-valued measure of an auxiliary characteristic,
if present. We assume the stratum membership of each element of the population is
known. We consider estimation of quantiles of the characteristic of interest where the
state of nature

y = (y1, . . . ,yG ), with yj =
(
(yj1 , xj1), . . . , (yjNj

, xjNj
)
)
,

belongs to a subset of RN ⊗RN for N =
∑G

1 Nj. We assume that the elements of yj

belong to some specified finite collection of G sets of real numbers bj = {bj1 , . . . , bjkj
}
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so the parameter space, Y(b1, . . . ,bG), can be expressed as{
y | For j = 1, . . . , G and i = 1, . . . , Nj , (yji , xji) = bjk

∈ bj for some k
}

.

A sample s is a subset of
G⋃

j=1

{j1, . . . , jNj}

containing n(s) =
∑G

1 nj(s) elements where nj(s) is the number of sampled elements
from the jth stratum. Stratified sampling defines a probability measure p on S, the
set of all possible samples. For a parameter point y ∈ Y(b1, . . . ,bG) and a sample

s =
⋃G

1 {ji1 , . . . , jinj(s)
}, where j1 ≤ ji1 < · · · < jinj(s)

≤ jNj
, define

ys =
G⋃
1

(
(yji1

, xji1
), . . . , (yjinj(s)

, xjinj(s)
)
)
.

A sample point,

z = (s, ys) =
G⋃
1

(
(ji1 , yji1

, xji1
), . . . , (jin(s)

, yjinj(s)
, xjinj(s)

)
)
,

consists of the set of observed labels s along with the corresponding values for the
characteristic of interest and the auxiliary characteristic, if present. The set of possible
sample points then depends on both the parameter space and the design. The sample
space is then given by

Z{Y(b1, . . . ,bG), p} ={
(s, ys) | p(s) > 0 and ys = ys for some y ∈ Y(b1, . . . ,bG)

}
.

In what follows we focus on stratified samples comprising simple random samples
of specified fixed size, nj, within each stratum so, for convenience, we suppress the
design p and use the notation Z(Y(b1, . . . ,bG)) for the sample space.

3. A Polya Posterior for Stratified Sampling

The standard ‘Polya posterior’ is derived from a noninformative nonparametric
stepwise Bayes estimation procedure. Stepwise Bayes arguments proceed by specify-
ing a finite sequence of disjoint subsets of the finite parameter space with a different
prior distribution defined on each of the subsets. These subsets and priors are consid-
ered in order where at each step the Bayes procedure is found for each sample point
receiving positive sampling probability under the respective prior distribution which
was not considered in earlier steps. This process continues until all possible samples
have been considered. The stepwise Bayes estimator for a given sample point is de-
fined to be the value of the estimator identified in the step in which that sample point
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was considered in the above process. If, for all b, the Bayes estimators identified in
these steps are unique then the resultant estimator will be admissible.

Under a particular stepwise Bayes argument, given an observed sample z = (s, ys),
the ‘Polya posterior’ is the predictive posterior distribution for the unobserved units in
the population conditional on the observed sample values derived from that sample in
the stepwise Bayes argument. This posterior distribution is equivalent to a Polya urn
sampling distribution for the unobserved elements where the urn initially contains the
observed sample. Feller [1] discusses Polya sampling in detail, Ghosh and Meeden [2]
present a detailed discussion of stepwise Bayes theory, the Polya posterior, and the
Polya urn interpretation of the Polya posterior.

Here we develop an extension of the Polya posterior applicable to samples from
stratified populations. In this and the following sections we omit the auxiliary char-
acteristic for convenience. The stepwise Bayes argument for this modification of the
Polya posterior partitions the parameter space Y(b1, . . . ,bG) into subsets

Yb(b′1, . . . ,b
′
G) where b′j = {b′j1 , . . . , b

′
jk′

j

} ⊆ bj .

For a given Yb(b′
1, . . . ,b

′
G), within each stratum the yji

only take values in b′
j and

for each value in b′
j there is at least one element in the stratum for which yji

takes
that value. On the subspace Yb(b′

1, . . . ,b
′
G) we specify the prior distribution

π(y ∈ Yb(b′1, . . . ,b
′
G)) ∝

G∏
j=1

{∫
Θk′

j

jk′
j∏

ji=1

θ
cy(i:j)−1
ji

dθ

}

where Θk′j
is the k′j−1 dimensional simplex and, for the ordered values in b′

j, cy(i : j)

denotes the number of elements in the jth stratum taking the value b′ji
.

These parameter subspaces are paired with the similarly defined sample subspaces
Z(Y((b′

1, . . . ,b
′
G)) and are considered in lexicographic order of the b′

1, . . . ,b
′
G. For

a given parameter point y ∈ Yb(b′
1, . . . ,b

′
G) consistent with an observed sample

z ∈ Z(Y(b′
1, . . . ,b

′
G)) the posterior predictive distribution takes the form

π(y ∈ Yb(b′1, . . . ,b
′
G) | z ∈ Z(Y(b′1, . . . ,b

′
G))) ∝

G∏
j=1

{ k′j∏
i=1

Γ(cy(i : j))
Γ(cz(i : j))

}

where the number of elements in the sample falling in the jth stratum and taking the
value b′ji

is denoted by cz(i : j). This posterior predictive distribution is equivalent to
independent Polya urn sampling within each of the strata.

In practice, given the sample, we simply identify the sets of values observed within
each stratum, {b′

1, . . . ,b
′
G}, along with the respective counts within each stratum,

namely the (cz(i : j)), and use the informal yet proper Polya posterior predictive
distribution,

π(y ∈ Yb(b′1, . . . ,b
′
G) | z ∈ Z(Y(b′1, . . . ,b

′
G)))
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to make inferences about the population. While this Polya posterior distribution is
not a formal Bayesian posterior distribution we utilize this posterior distribution in a
standard Bayesian manner, implicitly working with Yb(b′

1, . . . ,b
′
G) as the parameter

space.
For quantities such as the mean of the characteristic of interest and, as discussed

below, the quantiles of the characteristic of interest a closed form can be found for
the point estimator generated by this Polya posterior distribution under certain loss
functions. For other quantities it can be difficult to identify a closed form for the
estimator but in these cases the above posterior distribution can be used in a Monte
Carlo estimation procedure to approximate the Polya posterior estimator. Specifi-
cally, given the sample, pseudo-populations can be generated by Polya urn sampling
values for the unobserved population elements using the observed sample elements
as the initial values in the urns. For each pseudo-population we can construct the
relevant quantity of interest and use, say under squared error loss, the mean of these
values from many replications of this process as an approximation to the Polya poste-
rior estimator. In addition, we can form interval estimates for the quantity of interest
from these repeated draws from the Polya posterior. A simple 1− 2α credible set for
the characteristic of interest can be formed from the α and 1 − α quantiles of these
values for the characteristic of interest in the pseudo-populations.

4. Quantile Estimation in Stratified Populations

Recently, Nelson and Meeden [6] examined the form of the predictive distribution
for population quantiles generated by the standard Polya posterior. The distribution
considered there is applicable to simple random samples and situations where little
prior information is available. We modify the argument presented there to identify
the distribution of the population quantiles in a stratified population based on the
extension of the Polya posterior given above.

Given a finite set of possible values for the characteristic of interest, many functions
of the characteristic, such as the mean and the quantiles of the characteristic of
interest, are simply functions of the number of elements taking each of the values.
The Polya posterior distributions generates a posterior distribution for these counts.
Within each stratum denote the counts of the number of unobserved elements taking
each of the values in b′

j by

Mj = (cy(1 : j)− cz(1 : j), . . . , cy(jk′j
: j)− cz(jk′j

: j)).

The Polya posterior based distribution for these counts of the number of unobserved
elements satisfies

π
(
M1, . . . ,MG | z

)
=

G∏
1

{
Γ(nj)
Γ(Nj)

(
Nj − nj

Mj

) k′j∏
1

Γ(cy(i : j))
Γ(cz(i : j))

}
.

This posterior distribution can be used to find the Polya posterior based predictive
distribution for any quantile of the characteristic of interest.
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To develop this posterior distribution we employ the Polya urn interpretation of
the Polya posterior distribution categorizing the observed sample values as to whether
they fall above or below ys(l), the lth observed ordered sample value. Consider the
cumulative distribution function,

Pπ(· | z)

(
qα(y) ≤ ys(l)

)
,

where qα(y) is the α quantile of the population. For the α quantile of y to be less than
or equal to ys(l) we need at least dNαe of the population values for the characteristic
of interest to be less than or equal to ys(l). Let

Cy(l : j) =
∑

yji
≤ys(l)

cy(i : j)

and
Cz(l : j) =

∑
ysji

≤ys(l)

cz(i : j)

be the number of population elements and sample elements, respectively, in the jth

stratum taking a value less than or equal to ys(l). The posterior cumulative distribu-
tion function for the quantile takes the form

Pπ(· | z)

(
qα(y) ≤ ys(l)

)

=
∑

Cy(l,α)

G∏
j=1

{
Γ(Cy(l : j)) Γ(Nj − Cy(l : j))
Γ(Cz(l : j)) Γ(nj − Cz(l : j))

(
Nj − nj

Cy(l : j)− Cz(l : j)

)
Γ(nj)
Γ(Nj)

}

where the sum is restricted to the set of population counts

Cy(l, α) =
{(

Cy(l : 1), . . . , Cy(l : G)
)
|

Cy(l : j) > Cz(l : j) ∀j,
G∑

j=1

Cy(l : j) ≥ dNαe
}

for which the population quantile is less than ys(l). With the nj fixed,

Pπ(· | z)

(
qα(y) ≤ ys(l)

)
−→∫

Θ∗

{ G∏
j=1

Γ(nj)
Γ(Cz(l : j))Γ(nj − Cz(l : j))

θ
Cz(l:j)−1
j (1− θj)nj−Cz(l:j)−1

}
dθ

as the Nj −→∞, where

Θ∗ = { θ ∈ (0, 1)G | α ≤
G∑
1

Nj

N
θj }.
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This is the probability that the weighted average of G independent beta random
variables, with parameters (Cz(l : j), nj − Cz(l : j)), is at least α for weights given
by the proportions of the population within each stratum.

5. The Constrained Polya Posterior

Nelson and Meeden [5] considered an extension of the standard Polya posterior to
incorporate types of prior information about the population of interest which restrict
the population to subsets of the usual parameter space. Consider two finite parameter
spaces Y and YA ⊂ Y . If we specify a prior distribution π on Y we can then specify
a related prior distribution πA on YA defined by

πA(y) =
π(y)

π(YA)
=

π(y)∑
y∈YA π(y)

for each y ∈ YA. Given this structure, for a y ∈ YA consistent with an observed
sample z

πA(y | z) =
πA(y)
πA(z)

=
π(y | z)
π(A | z)

.

If the available prior information about the population restricts the population pa-
rameters to an identifiable subset of Y(b1, . . . ,bG) then, in general, we can develop a
stepwise Bayes argument for which the posterior predictive distribution is the Polya
posterior restricted to this subset. In practice, if we can not easily identify the resul-
tant form of the posterior distribution for the quantity of interest, we can approximate
the distribution by implementing a rejection sampling version of the Monte Carlo es-
timation process described above in which we only accept those results of the Polya
urn sampling process which satisfy the prior information.

A technical detail that needs to be considered in the full stepwise Bayes argument
generating this constrained Polya posterior, as discussed in Nelson and Meeden [5],
concerns the consistency of the sample with the prior information. Some samples
may not be consistent with the prior information in that it may be impossible to
construct pseudo-populations from the sample that meet the constraints given by the
prior information. For example, if we know the median of an auxiliary characteristic
but all of the observed sample values for the auxiliary characteristic fall below this
value it is impossible to construct a pseudo-population for which this value will be the
median of the auxiliary characteristic. These technical issues for the stepwise Bayes
argument can be easily handled as presented in Nelson and Meeden [5]. We focus
here on samples which are consistent with the prior information.

6. Knowledge Concerning an Auxiliary Characteristic

Consider estimation of population quantiles for the characteristic of interest when
we have prior information concerning the auxiliary characteristic which places a set of
constraints on the number of elements of the population taking specific values. More
specifically, consider a partition of the possible values for the auxiliary characteristic
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given by the collection of sets Ai, i = 1, . . . , p for some p. Based upon this partition
consider a collection of q groupings of these partition sets,

Bk =
{
Ak1 , . . . ,AkBk

}
, k = 1, . . . , q,

together with a collection of q bounds, {lk, uk}, specifying a set of constraints on the
auxiliary characteristic given by

lk ≤
Bk∑
l=1

G∑
j=1

∑
xji

∈Akl

cy(i : j) ≤ uk, k = 1, . . . , q.

These constraints then specify that, for each k = 1, . . . , q, the number of elements
taking values which fall in any of the sets in Bk lies between lk and uk. The results
discussed above can be integrated to construct a constrained Polya posterior generated
predictive distribution for any quantile of the characteristic of interest that places
positive posterior probability only on population parameters that satisfy this set of
constraints on the auxiliary characteristic.

With
Al

0 = (−∞, ys(l)], Al
1 = (ys(l),∞).

define

Cu
y(l, v, j) =

∑
yji

∈Al
u, xji

∈Av

cy(i : j)

to be the number of population elements in the jth stratum with the characteristic
of interest in Al

u and with the auxiliary characteristic in Av. Let Cu
z (l, v, j) be the

analogous sample count and let Du(l, v, j) be the difference between the respective
population counts and the sample counts. Let

C
Nj−nj
y,z (l, j) =

(
Nj − nj

D0(l, 1, j), D0(l, 2, j), . . . , D1(l, p, j)

)
Define Cα,A to be the set of vectors for the population counts which satisfy the
constraints on the auxiliary characteristic, namely

lk ≤
Bk∑

m=1

G∑
j=1

∑
xji

∈Akm

cy(i : j) =
Bk∑

m=1

G∑
j=1

1∑
u=0

Cu
y(l, km, j) ≤ uk

for all k = 1, . . . , q, and let Cl,α,A be the subset of Cα,A containing vectors for the
population counts which satisfy

G∑
j=1

p∑
i=1

C0
y(l, i, j) ≥ dNαe

The set Cl,α,A then identifies the set of population counts satisfying the above con-
straints which yield a quantile for the characteristic of interest no greater than ys(l).
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Modifying the arguments above yields the posterior predictive distribution

Pπ(· | z

(
qα(y) ≤ ys(l)

)

=

∑
Cl,α,A

{∏G
j=1

{∏1
u=0

∏p
v=1

Γ(Cu
y (l,v,j))

Γ(Cu
z (l,v,j))

}
C

Nj−nj
y,z (l, j) Γ(nj)

Γ(Nj)

}
∑

Cα,A

{∏G
j=1

{∏1
u=0

∏p
v=1

Γ(Cu
y (l,v,j))

Γ(Cu
z (l,v,j))

}
C

Nj−nj
y,z (l, j) Γ(nj)

Γ(Nj)

} .

For fixed nj, as all Nj −→∞ the cumulative distribution approaches

Pπ(· | z)

(
qα(y) ≤ ys(l)

)
−→

∫
Θ∗
A

{∏G
j=1 Γ(nj)

∏
u,v

θ
Cu
z (l,v,j)−1

ju,v

Γ(Cu
z (l,v,j))

}
dθ∫

ΘA

{∏G
j=1 Γ(nj)

∏
u,v

θ
Cu
z (l,v,j)−1

ju,v

Γ(Cu
z (l,v,j))

}
dθ

where ΘA is the set of θ = (θ10,1 , . . . , θG1,p), with θji′,j′
∈ (0, 1), which satisfy the

conditions ∑
u,v θju,v = 1 for all j = 1, . . . , G,

lk
N ≤

∑G
j=1

∑
u

∑
v 3Av∈Bk

θju,v ≤ uk
N for each k = 1, . . . , q

and Θ∗
A is the subset of ΘA satisfying the additional condition

T =
G∑

j=1

Nj

N

{∑
v

θj0,v

}
≥ α.

Consider a collection of G independent Dirichlet random variables,

θj = (θj0,1 , θj0,2 , . . . , θj1,p) ∼ D(C0
z(l, 1, j), C0

z(l, 2, j), . . . , C1
z(l, p, j)).

T is the weighted average of the sums of the first half of the components of the
individual Dirichlet random variables, with weights Nj/N . The asymptotic form for
the above Polya posterior distribution is equivalent to the probability that T is at
least α conditional on the Dirichlet random variables, θj, satisfying the constraints
directly above.

As an example of the situation we are considering assume we know a priori that
the median of the auxiliary characteristic falls in the interval A = [a1, a2]. For the
auxiliary characteristic median to fall in A we need at least dN

2
e of the population

values for the auxiliary characteristic to be less than a2 and at least dN
2
e of the

population values for the auxiliary characteristic to be greater than a1. Specifically
then, with

A1 = (−∞, a1), A2 = [a1, a2], A3 = (a2,∞)

Al
0 = (−∞, ys(l)], Al

1 = (ys(l),∞)
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we have the constraints

2∑
v=1

G∑
j=1

1∑
u=0

Ci
y(l, v, j) ≥

⌈N

2

⌉
,

3∑
v=2

G∑
j=1

1∑
u=0

Ci
y(l, v, j) ≥

⌈N

2

⌉
and for the quantile of the characteristic of interest to be less than ys(l) we have the
condition that

G∑
j=1

3∑
v=1

C0
y(l, v, j) ≥ dNαe.

7. Simulation Results

The discussion above focused upon identifying the forms of Polya posterior based
posterior predictive distributions for population quantiles applicable to sampling from
a stratified population. The Polya urn schemes associated with the identified posterior
distributions provide an intuitive basis for developing estimators of the population
quantiles. As discussed above, the estimators derived from the Polya posterior tech-
niques can often be shown to be unique stepwise Bayes estimators and hence can be
shown to be admissible estimators. Although admissibility is a property that an esti-
mator would be expected to possess, good estimation techniques would be expected
to possess additional desirable properties. For instance, it is often of interest to ob-
tain not only point estimates but also interval estimates for the quantity of interest.
In addition to point estimates which perform well a good estimation technique also
should provide interval estimates which perform well. Polya posterior based esti-
mators have been observed to possess desirable frequentist properties for a variety
of estimation problems. We could then expect the point and interval estimates ob-
tained from the Polya posterior distributions developed above to perform well from
a frequentist standpoint.

We conducted a small simulation study to investigate the performance of the Polya
posterior median estimators for stratified populations. In each simulation, two hun-
dred fifty populations were formed from a specified stratified superpopulation model
comprising both a characteristic of interest and an auxiliary characteristic. These su-
perpopulation models are summarized in Table 1. Nelson and Meeden [6] examined
the performance of the posterior predictive distribution obtained from the standard
Polya posterior. They observed that for continuous characteristics of interest the
Polya posterior estimates tended to yield some improvement over the standard fre-
quentist estimators but for highly discrete characteristics of interest the standard
frequentist estimators tended to perform better than the Polya posterior. We consid-
ered three general classes of superpopulation models for which both characteristics
were continuous and three classes for which both characteristics were discrete.

The different model classes are presented in Table 1. Within each class the values
for the auxiliary characteristic within each stratum were constructed using different
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members of the same family of distributions. The distributions used in the individ-
ual strata are listed in the Table. Given the values for the auxiliary characteristic,
the characteristic of interest was generated using a conditional linear model distri-
bution where the variance for the conditional distribution varied within the class
of simulations. The distributions for the auxiliary characteristic in the last class
of superpopulation models presented in Table 1, denoted U(a : b), place a uniform
distribution on the integers between a and b.

For each generated population a stratified random sample was drawn, sampling
10% of each stratum population. For each sample we computed the values of the
standard frequentist point and 95% confidence interval estimates of the population
median using the inversion of the empirical cumulative distribution function as de-
veloped by Woodruff [9] and outlined in Särndal, Swensson and Wretman [8]. The
empirical cumulative distribution function is the weighted combination of strata spe-
cific empirical distribution functions with weights equal to the stratum proportion of
the total population.

In addition, we computed the point and interval estimates obtained from two
different Polya posterior distributions. The first, as discussed in section 4, did not
use any information about the auxiliary characteristic. The second Polya posterior
distribution for the population median did use information about the auxiliary char-
acteristic, as discussed in section 6. This Polya posterior distribution considered
knowledge that the median of the auxiliary characteristic fell in the interval formed
by the 45th and 55th population percentiles of the auxiliary characteristic.

For each approach, Polya posterior based point estimates and the 95% credible
set interval estimate for the population median were obtained for each sample. As
point estimators we considered both the median of the Polya posterior distribution
and the mean of the Polya posterior distribution. Meeden and Vardeman [4], and
subsequently Nelson and Meeden [6] observed that the mean of the Polya posterior
for a population quantile often performs better than both the median of the posterior
distribution and the standard frequentist estimators. We approximated the form of
the Polya posterior quantile distributions to construct each of these Polya posterior
based estimators. These approximations used Monte Carlo and rejection sampling
Monte Carlo methods based on the respective Beta and Dirichlet interpretations for
the asymptotic forms of the Polya posterior quantile distributions given above.

Table 1 summarizes the results of the simulations examining the performance of
the median of the Polya posterior distributions as point estimates of the population
median. A summary of the performance of the interval estimates obtained from the
Polya posterior distributions also is presented in this table. For each estimator we
computed the mean absolute deviation of the estimates and the average coverage and
length of the interval estimates for the 250 replications in the simulation.

For the superpopulation models comprising continuous characteristics the perfor-
mance of the Polya posterior based estimators which ignores the prior information
about the auxiliary characteristic is similar to that of the standard frequentist estima-
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Table 1: Summary of Simulation Results: Median Estimation using Median of Polya
Posterior

Population Polya Estimates using Polya Estimates Frequentist Estimates
Prior Information

x ∼ N(15, 5), N(20, 6),
N(25, 5), N(28, 8)

y ∼ 5x + N(0, σ)
Strata Sizes = 250

σ = 10
σ = 20
σ = 30

x ∼ Gamma(2, 1), Gamma(6, 1),
Gamma(10, 1), Gamma(14, 1)

y ∼ x + Gamma(η, 1)
Strata Sizes = 300

η = 6
η = 16
η = 26

x ∼ 15Beta(2, 10), 20Beta(4, 16),
25Beta(7, 25)

y ∼ x + N(0, σ)
Strata Sizes = 250

σ = 1.0
σ = 1.5
σ = 2.0

x ∼ Bin(25, .5), Bin(35, .7),
Bin(40, .5), Bin(50, .6)

y ∼ bx + N(0, σ)c
Strata Sizes = 250

σ = 5
σ = 10
σ = 15

x ∼ bGamma(3, 1)c, bGamma(5, 1)c,
bGamma(7, 1)c

y ∼ bx + N(0, 1)c
Strata Sizes = 250

σ = 1
σ = 3
σ = 5

x ∼ U(1:20), U(10:30),
U(20:40), U(30:55)

y ∼ bx + N(0, σ)c
Strata Sizes = 250

σ = 5
σ = 10
σ = 15

AAE AvCvr AvLn

2.428 0.972 12.020
3.032 0.984 15.000
3.516 0.980 18.288

0.377 0.936 1.734
0.493 0.916 2.111
0.535 0.920 2.456

0.178 0.936 0.884
0.224 0.940 1.045
0.285 0.932 1.243

0.592 0.996 3.804
1.216 0.976 5.732
1.472 0.956 7.396

0.348 0.984 1.972
0.364 0.984 2.712
0.620 0.984 3.436

0.952 0.980 5.108
1.192 0.968 6.752
1.732 0.948 8.336

AAE AvCvr AvLn

3.480 0.960 15.256
3.584 0.948 17.228
4.040 0.960 19.808

0.413 0.924 1.855
0.517 0.908 2.160
0.550 0.920 2.486

0.232 0.916 1.063
0.262 0.940 1.171
0.306 0.944 1.358

0.620 0.996 3.800
1.192 0.976 5.804
1.464 0.952 7.352

0.376 0.980 2.120
0.408 0.988 2.768
0.620 0.984 3.496

1.016 0.980 5.264
1.308 0.960 6.824
1.756 0.948 8.348

AAE AvCvr AvLn

3.416 0.952 14.804
3.580 0.948 16.664
4.020 0.952 19.328

0.414 0.916 1.775
0.507 0.900 2.092
0.553 0.908 2.425

0.232 0.920 1.036
0.262 0.920 1.139
0.306 0.936 1.300

0.584 1.000 3.784
1.192 0.968 5.656
1.484 0.956 7.276

0.376 0.976 2.084
0.408 0.984 2.672
0.620 0.976 3.384

0.972 0.972 5.184
1.352 0.964 6.680
1.724 0.944 8.136

Average Absolute Error (AAE) of Point Estimates

Average Coverage (AvCvr) and Average Length (AvLn) of Interval Estimates
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tors. The mean absolute deviation of the two estimators are similar and the coverage
and lengths of the interval estimates obtained from the two approaches are similar
though the interval estimates from the Polya posterior are consistently slightly longer.
The estimators based on the Polya posterior estimator which uses the prior informa-
tion about the median of the auxiliary characteristic demonstrate an improvement
in the absolute error of estimation. For these continuous superpopulation models
the Polya posterior estimators using the prior information yield interval estimates of
similar or lesser length with similar to greater coverage.

For the Polya posterior ignoring the prior information similar results were found
for the simulations using superpopulation models comprising discrete characteristics.
In these simulations the performance of the interval estimates based on the Polya pos-
terior incorporating the prior information was similar to that of the other approaches.
The relative performance of the point estimates based on this posterior distribution
was more mixed for these discrete superpopulation models than for the continuous
superpopulation models. In general though, this approach yielded point estimates
with similar or smaller error compared to the other approaches.

We examined whether the mean of the Polya posteriors for quantiles of strati-
fied populations exhibit the robustness to the loss function observed by Meeden and
Vardeman [4] and Nelson and Meeden [6]. Table 2 presents a summary of the per-
formance of the mean of the Polya posteriors in relation to the performance of the
median of the posteriors. The mean of the Polya posterior distribution yielded similar
to greatly improved performance relative to the median of the posterior distribution
under both loss functions for all but one of the classes of superpopulation models.
For this group of superpopulation models the mean did not perform better than the
median of the posterior or the standard frequentist estimator under the absolute er-
ror loss function. For most of the superpopulation models the means of the Polya
posterior performed better than the standard frequentist estimator under both loss
functions.

8. Final Remarks:

Often, explicit forms for Polya posterior generated distributions for the quantities
of interest can not easily be identified and must be estimated through simulation.
Here we demonstrate that the standard Polya posterior can be extended readily for
application to stratified populations where the form of the resultant distribution for
population quantiles is easily identified. Given the complexity of the identified poste-
rior distribution it may be more convenient to approximate the posterior distribution.
However, the argument used to identify the forms of the Polya posterior generated
quantile distributions is easily adapted to incorporate a broad array of prior infor-
mation about an auxiliary characteristic in the formulation of the Polya posterior
generated quantile distributions. When incorporating prior information that the me-
dian of an auxiliary characteristic falls in a specified interval the resultant Polya
posterior median estimators tend to possess attractive frequentist properties. This
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Table 2: Summary of Simulation Results: Relative Performance of Mean and Median
of Polya Posterior for Point Estimation of Population Median

Population Polya Estimates using Polya Estimates Frequentist Estimates
Prior Information

x ∼ N(15, 5), N(20, 6),
N(25, 5), N(28, 8)

y ∼ 5x + N(0, 10)
Posterior Median
Posterior Mean

y ∼ 5x + N(0, 20)
Posterior Median
Posterior Mean

x ∼ Gamma(2, 1), Gamma(6, 1),
Gamma(10, 1), Gamma(14, 1)

y ∼ x + Gamma(6)
Posterior Median
Posterior Mean

y ∼ x + Gamma(16)
Posterior Median
Posterior Mean

x ∼ 15Beta(2, 10), 20Beta(4, 16),
25Beta(7, 25)

y ∼ x + N(0, 1.0)
Posterior Median
Posterior Mean

y ∼ x + N(0, 1.5)
Posterior Median
Posterior Mean

x ∼ Bin(25, .5), Bin(35, .7),
Bin(40, .5), Bin(50, .6)

y ∼ bx + N(0, 5)c
Posterior Median
Posterior Mean

y ∼ bx + N(0, 10)c
Posterior Median
Posterior Mean

x ∼ bGamma(3, 1)c, bGamma(5, 1)c,
bGamma(7, 1)c

y ∼ bx + N(0, 1)c
Posterior Median
Posterior Mean

y ∼ bx + N(0, 3)c
Posterior Median
Posterior Mean

x ∼ U(1:20), U(10:30),
U(20:40), U(30:55)

y ∼ bx + N(0, 5)c
Posterior Median
Posterior Mean

y ∼ bx + N(0, 10)c
Posterior Median
Posterior Mean

AAE RMSE

2.428 3.090
2.185 2.737

3.032 3.726
2.714 3.373

0.377 0.475
0.346 0.439

0.493 0.644
0.455 0.589

0.178 0.226
0.171 0.211

0.225 0.279
0.212 0.264

0.592 0.885
0.618 0.794

1.216 1.572
1.137 1.428

0.348 0.590
0.383 0.480

0.364 0.616
0.420 0.540

0.952 1.236
0.896 1.118

1.192 1.536
1.174 1.454

AAE RMSE

3.480 4.326
3.199 3.949

3.584 4.550
3.274 4.181

0.413 0.519
0.383 0.479

0.517 0.671
0.470 0.605

0.232 0.296
0.223 0.281

0.262 0.322
0.251 0.306

0.620 0.919
0.619 0.801

1.192 1.565
1.137 1.426

0.376 0.613
0.414 0.511

0.408 0.669
0.450 0.572

1.016 1.327
0.940 1.184

1.308 1.658
1.206 1.498

AAE RMSE

3.416 4.210

3.580 4.540

0.414 0.515

0.507 0.656

0.232 0.296

0.262 0.322

0.584 0.863

1.192 1.544

0.376 0.613

0.408 0.669

0.972 1.298

1.352 1.695

Average Absolute Error (AAE) and Root Mean Square Error (RMSE) of Point Estimates
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type of prior information is not easily exploited using standard frequentist methods.
The resultant Polya posterior estimates tend to offer similar to greatly improved per-
formance relative to standard frequentist approaches which do not incorporate this
prior information.
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